Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles.
نویسندگان
چکیده
As part of a research program aimed at producing biodiesel fuel from plant oils enzymatically cells of Rhizopus oryzae (R. oryzae) IFO4697 (with a 1,3-positional specificity lipase) immobilized within biomass support particles (BSPs) were investigated for the methanolysis of soybean oil. The R. oryzae cells easily became immobilized within the BSPs during batch operation. To enhance the methanolysis activity of the immobilized cells under the culture conditions used, various substrate-related compounds were added to the culture medium. Among the compounds tested, olive oil or oleic acid was significantly effective. In contrast, no glucose was necessary. Immobilized cells were treated with several organic solvents, but none gave higher activity than untreated cells. When methanolysis was carried out with stepwise additions of methanol using BSP-immobilized cells, in the presence of 15% water the methyl esters (MEs) content in the reaction mixture reached 90% - the same level as that using the extracellular lipase. The process presented here, using a whole cell biocatalyst, is considered to be promising for biodiesel fuel production in industrial applications.
منابع مشابه
Development of Clay Foam Ceramic as a Support for Fungi Immobilization to Biodiesel Production (RESEARCH NOTE)
Biodiesel is an attractive alternative fuel because of its nontoxicity and biodegradability properties. Biodiesel is produced through transesterification of vegetable oils’ triglyceride. It is obtained from vegetable oils or fats either by chemical or enzyme-catalyzed transesterification with methanol or ethanol. By using whole-cell biocatalyst immobilized within biomass support particles (BSPs...
متن کاملBiocatalytic behaviour of immobilized Rhizopus oryzae lipase in the 1,3-selective ethanolysis of sunflower oil to obtain a biofuel similar to biodiesel.
A new biofuel similar to biodiesel was obtained in the 1,3-selective transesterification reaction of sunflower oil with ethanol using as biocatalyst a Rhizopus oryzae lipase (ROL) immobilized on Sepiolite, an inorganic support. The studied lipase was a low cost powdered enzyme preparation, Biolipase-R, from Biocon-Spain, a multipurpose additive used in food industry. In this respect, it is deve...
متن کاملEffect of external mass transfer on activation energy of butyl oleate ester synthesis using a whole cell biocatalyst
In the present research, synthesis of butyl oleate ester from oleic acid and butanol using loofa-immobilized Rhizopus oryzae as a whole cell biocatalyst (LIC) was studied in which hexane was used as the hydrophobic solvent. Decrease of mass transfer limitations as result of the interface formation between the two immiscible substrates, positively affected on the reaction progress (87% as the es...
متن کاملHigh-level expression and characterization of a chimeric lipase from Rhizopus oryzae for biodiesel production
BACKGROUND Production of biodiesel from non-edible oils is receiving increasing attention. Tung oil, called "China wood oil" is one kind of promising non-edible biodiesel oil in China. To our knowledge, tung oil has not been used to produce biodiesel by enzymatic method. The enzymatic production of biodiesel has been investigated extensively by using Rhizopus oryzae lipase as catalyst. However,...
متن کاملCombined Strategies for Improving the Production of Recombinant Rhizopus oryzae Lipase in Pichia pastoris
We have developed a yeast Pichia pastoris system for the high-level expression of recombinant Rhizopus oryzae lipase (ROL), which is a potentially effective catalyst in the solvent-free production of biodiesel fuel. In the glycerol fed-batch phase, the combination of the dissolvedoxygen-stat and gradient-control glycerol feeding strategies resulted in a higher cell biomass in the P. pastoris cu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemical engineering journal
دوره 8 1 شماره
صفحات -
تاریخ انتشار 2001